

Einführung in die Wirtschaftsinformatik

Teil 4 - Vom Datenmodell zur Tabelle Wintersemester 2025/2026

Lehrstuhl für Wirtschaftsinformatik
Prozesse und Systeme

Universität Potsdam

Chair of Business Informatics Processes and Systems

University of Potsdam

Univ.-Prof. Dr.–Ing. habil. Norbert Gronau *Lehrstuhlinhaber* | *Chairholder*

Mail August-Bebel-Str. 89 | 14482 Potsdam | GermanyVisitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam

Tel +49 331 977 3322

E-Mail ngronau@lswi.de

Web Iswi.de

Lernziele

- Wie wird ein Entity-Relationship-Modell aufgebaut und welche Elemente (Entities, Attribute, Beziehungen, Kardinalitäten) enthält es?
- Wie erfolgt die Überführung vom ER-Modell in ein relationales Schema?
- Welche Regeln und Voraussetzungen gelten für die relationale Modellierung?
- Was sind Primär- und Fremdschlüssel, und welche Rolle spielen sie für Datenintegrität und Tabellenbeziehungen?
- Wie werden Entitytypen und Relationshiptypen zu Tabellen überführt und miteinander verknüpft?

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM

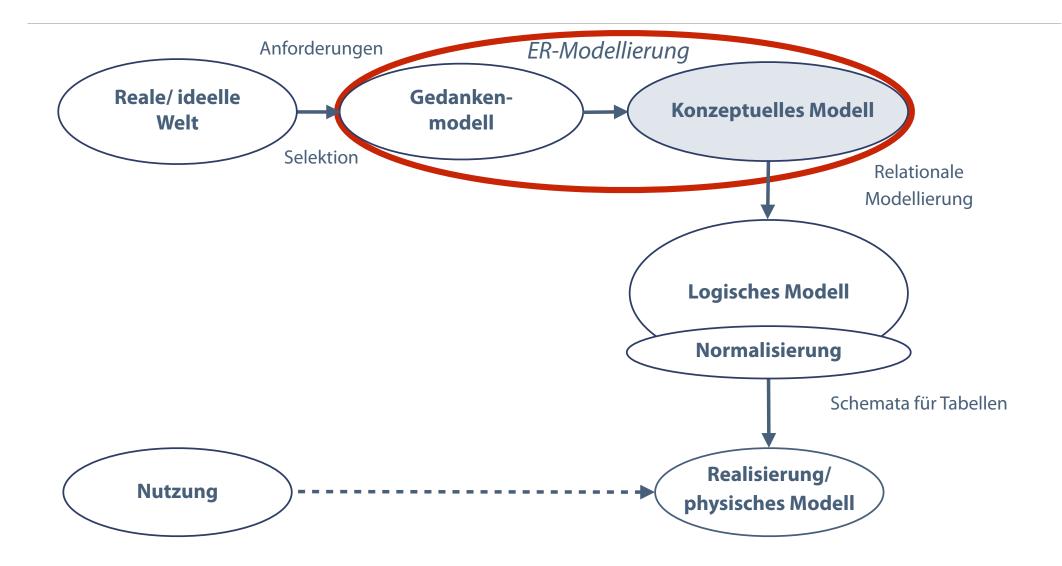
Modellierungsschritte am Beispiel

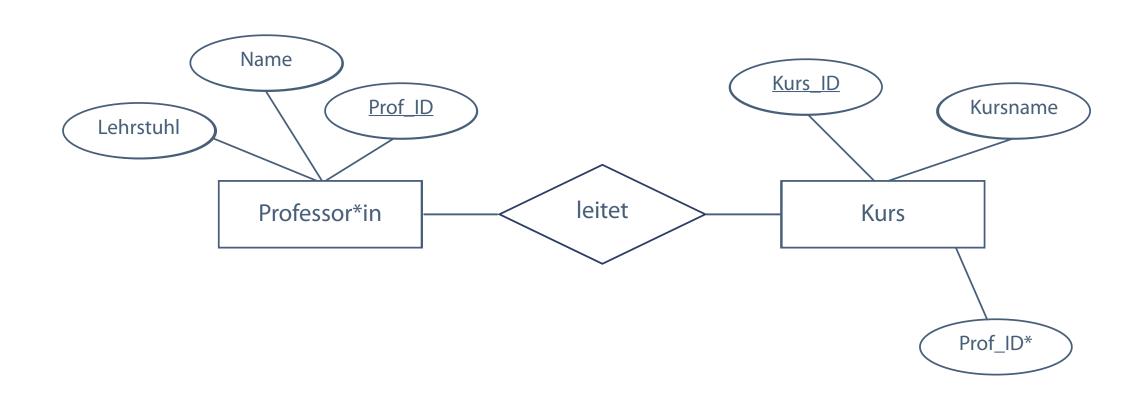
Vom ERM zum Relationenschema

Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

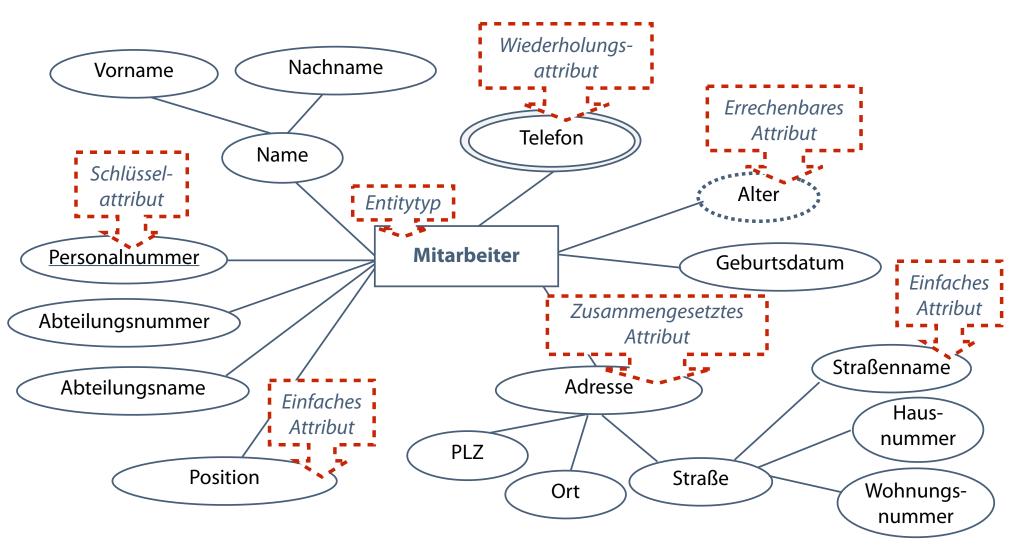
Hörsaal-Quiz - Einleitungsfragen


Öffnet die App über den QR-Code oder den Link:


https://quiz.lswi.de/

pwd: ewinf

Der Weg zur Datenbank - ER-Modellierung



Beispiel eines Entity-Relationship-Diagramms (einfaches Prinzip)

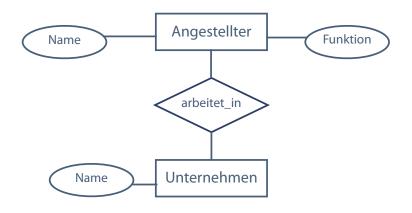
Ein Fremdschlüssel in der ER- Modellierung zeigt auf eine andere Entität und verbindet so beide miteinander.

Entitytyp Mitarbeiter der Firma WIProM AG

Ein Entity kann verschiedene Typen von Attributen besitzen.

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM


Modellierungsschritte am Beispiel

Vom ERM zum Relationenschema

Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

Unterschied zwischen Entitytyp und Entity

Angesteller

Name: Tim Cook Firma: Apple Funktion: CEO

Typebene

- Zusammenfassung der Objekte der Ausprägungsebene zu Typen
- Grafische Darstellung der Entitäten und Beziehungen

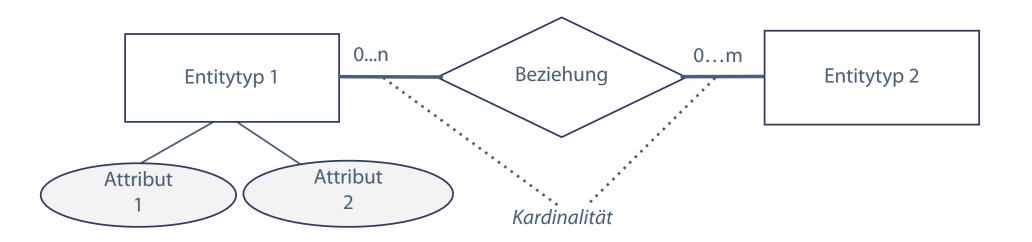
Ausprägungsebene

- Beschreibungsebene des einzelnen Entities
- Enthält Namen und Typ-Information -Selbstbeschreibung
- Entity wird durch konkrete Attributwerte beschrieben

Die Betrachtung der Begriffe Entity, Relationship und Attribut erfolgt getrennt auf Ausprägungs- und Typebene.

Syntax der ER-Modellierung

Attribute und Entitytypen


Bezeichnung - Substantive (Singular)

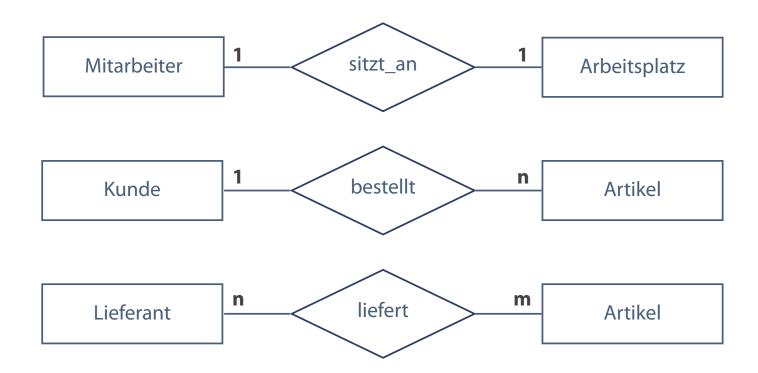
Relationshiptypen (Beziehungen)

Bezeichnung - Verben (3. Person, Singular)

Wertmäßige Beziehung (Kardinalität)

 Zuordnung zu Entitytyp - genau eine Kardinalität (mögliche Anzahl von Verbindungen zwischen den Werten 0 und n)

Syntax (Satzbau) legt die formalen Beschreibungsregeln für die einzelnen Objekte im ERM fest.


Kardinalität

Mengenangabe zu Beziehungstypen

 Beschreibung der zahlenmäßigen Beteiligung von Entities einer Klasse (Entitytyp) an der jeweiligen Beziehung (Relationship)

Genaue Charakterisierung von Relationshiptypen

Zeigt Verhältnis zwischen beteiligten Entitytypen

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM

Modellierungsschritte am Beispiel

Vom ERM zum Relationenschema

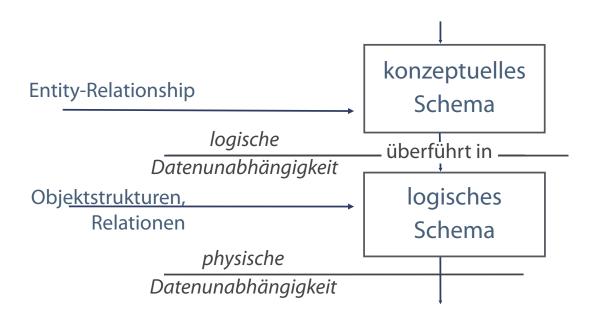
Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

Einführung in das Arbeitsbeispiel - die WiProM AG

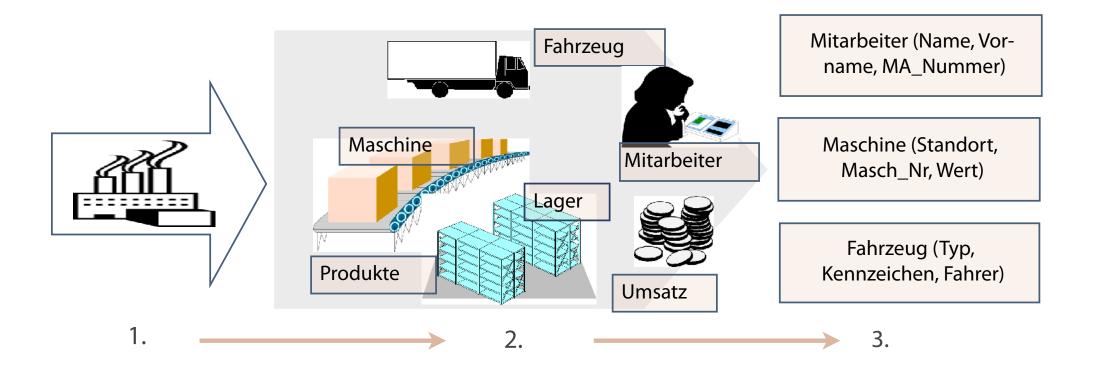
Das fiktive Unternehmen

- Führendes Unternehmen in der Entwicklung und Produktion von hochwertigen Holzbearbeitungsmaschinen
- Internationaler Vertrieb direkt an Firmenkunden sowie an Groß- und Einzelhändler


Struktur und Zahlen

- 199 Angestellte (Ausschnitt aus dem Unternehmen)
- 36 Abteilungen
- 11 Standorte (inkl. weltweiter Vertriebsstandorte)
- 20 Produkte im Sortiment
- Zusätzlich werden einige Angestellte in verschiedenen internen Projekten eingesetzt

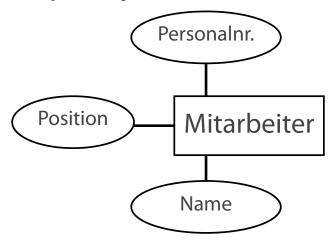
Entwurfsschritte


Prinzipielles Vorgehen

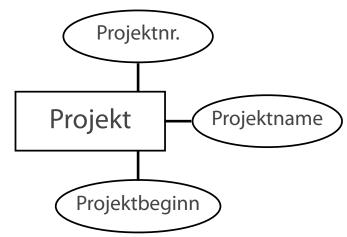
- Ausgangspunkt Erstellung eines konzeptuellen Schemas z.B. Entity Relationship Modell (ERM)
- Zwischenschritt Überführung in logisches Schema z.B. Relationenmodell
- Ziel Übersetzung in eine konkrete Datenbeschreibungssprache z.B. SQL (Structured Query Language)

Schritte der ER-Modellierung

- 1. Betrachtung von Objekten der "realen Welt" mit den beschreibenden Attributen
- 2. Festlegung der Beziehungen zwischen den Objekten und deren Kardinalitäten
- 3. Klassifizierung der Objekte und Beziehungen zu Entitytypen und Relationship-Typen mit den Attribute



Schritt 1 - Identifizierung der beteiligten Objekte und Benennung der Beziehungen

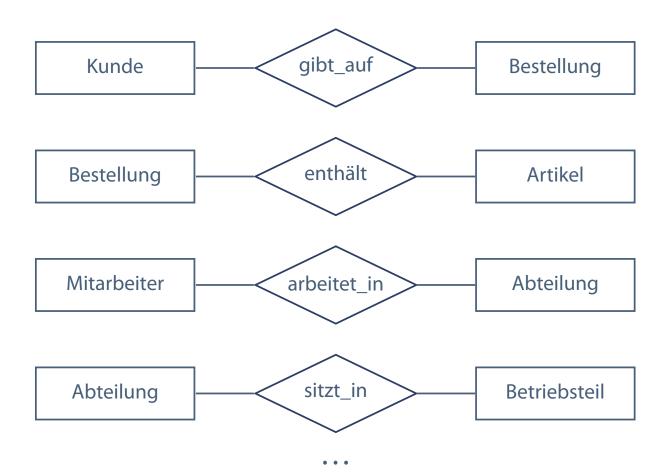

Objekte

- Individuelle und identifizierbare Elemente,
- Individuen, Sachen,
- Begriffe, Ereignisse o.ä. innerhalb des Systems, die durch ihre Eigenschaften (Attribute) beschrieben werden.

Beispiel: Objekt Mitarbeiter

Beispiel: Objekt Projekt

Jedes Objekt erhält konkrete Eigenschaften, diese beschreiben das Objekt hinreichend. Der Attributbezeichner muss im Bezug zu seinem Inhalt stehen. Attributbezeichner können auch leere Attributwerte besitzen.


Schritt 2 (1) - Festlegung der Beziehungen

Verbindung von mindestens zwei Entitäten

Benennung grundsätzlich durch Verben

Identifikation der Beziehung durch diese

"gehört_zu", "betreut", "arbeitet_in", "kauft"

Schritt 2 (2) - Festlegung der Kardinalitäten

Leiter	leitet	Abteilung
Abteilungsleiter Vertrieb	<>	Vertrieb
Abteilungsleiter Einkauf	<>	Einkauf
Abteilungsleiter Fertigung	<>	Fertigung
Abteilungsleiter Konstruktion	<>	Konstruktion

Lieferant	liefert	Artikel
Thiele GmbH	<>	Zapfenschneider FPL200
Barthel Simon SA	<>	Bandsäge Concept
Thiele GmbH	<>	Zapfenschneider FPL520
Braun GmbH & Co.	<>	CNC-Drehmaschine TCA12

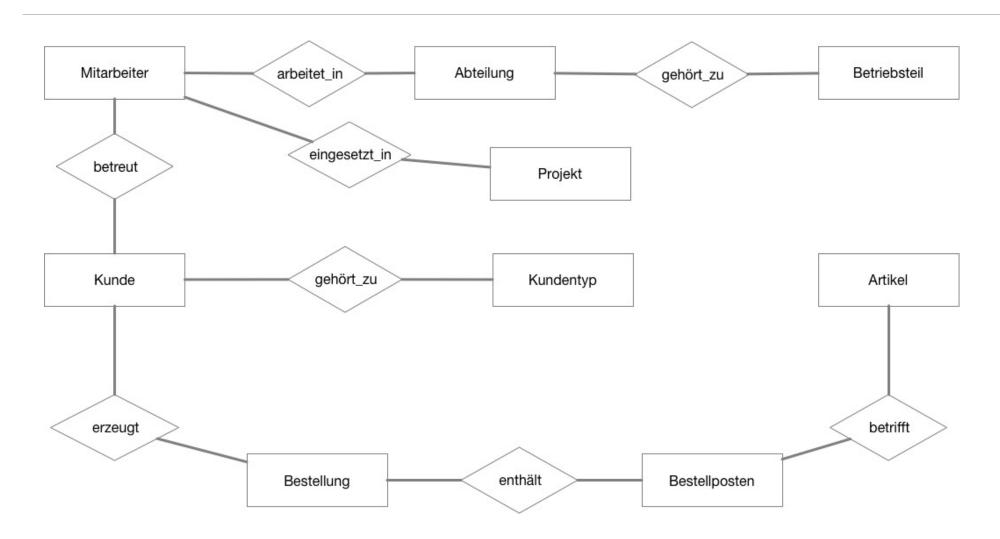
Bestellnummer	enthält	Artikel
24206757	<>	Parallelgreifer GPE JKC29
24206757	<>	Trennbandsäge Canali
78053064	<>	Zapfenschneider FPL520
40401442	<>	Parallelgreifer GPE JKC29

	_ n		m _	
Bestellung	<u> </u>	enthält		Artikel
	_			

Kardinalität 1:1

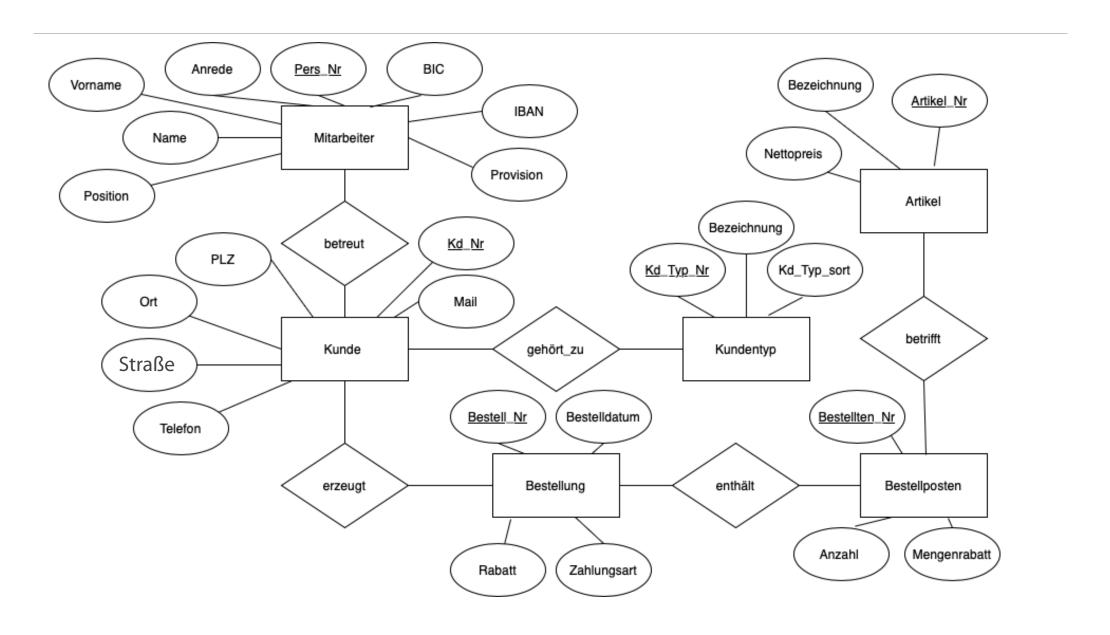
- Zuordnung:
 - 1 Objekt "A" --> 1 Objekt "B"
 - 1 Objekt "B" --> 1 Objekt "A"

Kardinalität 1:n

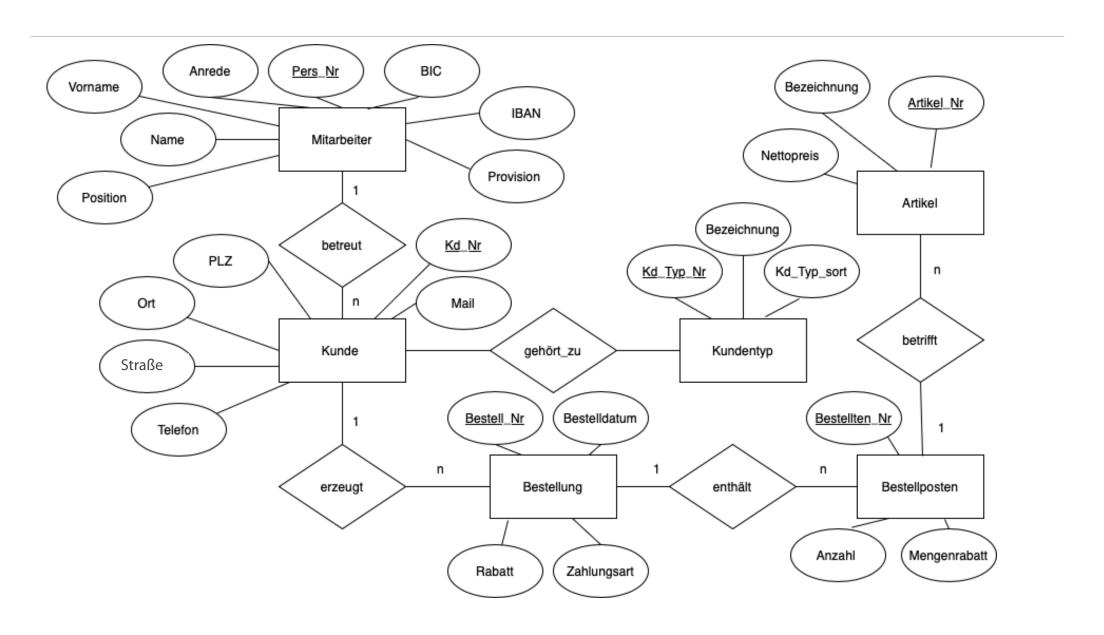

- Zuordnung:
 - 1 Objekt "A" --> mehrere Obj. "B"
 - 1 Objekt "B" --> 1 Objekt "A"

Kardinalität n:m

- Zuordnung:
 - 1 Objekt "A" --> mehrere Obj. "B"
 - 1 Objekt "B" --> mehrere Obj. "A"


<u>Achtung:</u> Dies ist nur ein Beispiel und kommt so nicht in unserem finalen Diagramm vor.

Ausgangslage: ER-Diagramm WiProM AG (Datenobjekte)



Ausgangspunkt für die Modellierung ist die Erfassung aller relevanten Datenobjekte für das Ausgangsmodell.

Ausschnitt: Zwischenergebnis - ER-Diagramm WiProM AG (Bestellung)

Ausschnitt: Abschließendes ER-Diagramm mit Kardinalitäten (Bestellung)

Schritt 3 - Beschreibung und Erstellung von Entitytypen

Zusammenfassung von Objekten (Entities) mit gleicher Attributstruktur

Ergebnis: Entitytypen

Typbezeichner (Attributbez. 1, Attributbez. 2, ...)

- Mitarbeiter
 - (PERSONALNUMMER, NAME, VORNAME, ANREDE, AKAD_TITEL, POSITION, GEBURTSTAG, EINSTELLUNG, GEHALT, ABTEILUNG, ABTEILUNGSNUMMER, BANKVERBINDUNG, PROVISION, ...)
- Artikel
 (ARTIKEL_NR, ARTIKELGRUPPE_NR, BEZEICHNUNG, NET_PREIS,
 MWST_RED, MWST)
- Bestellung (BESTELL_NR, BESTELLDATUM, KD_NR, VERTRIEB_NR)

Später übersichtlichere Darstellung durch Schema

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM

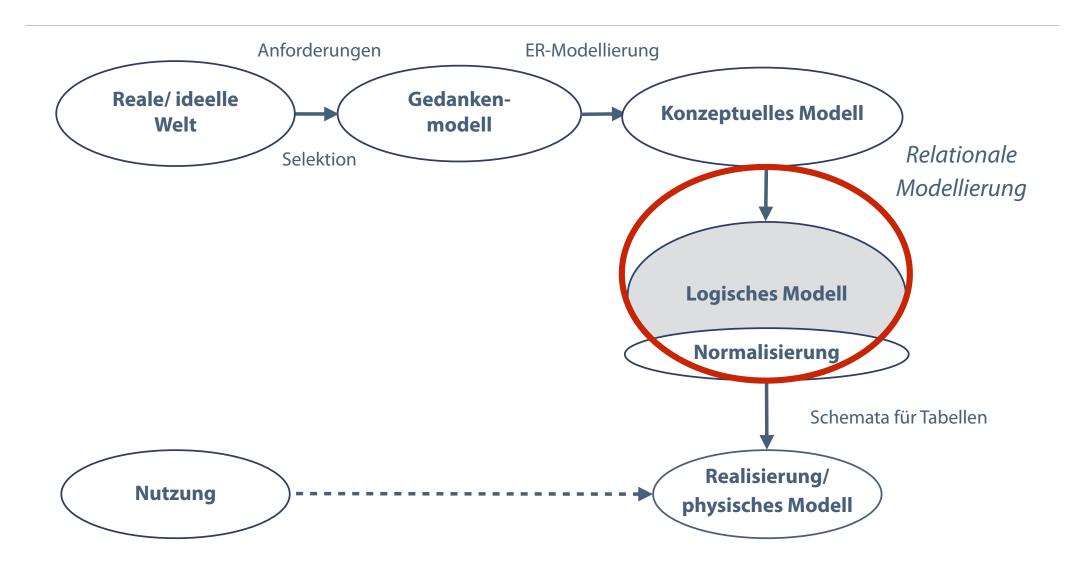
Modellierungsschritte am Beispiel

Vom ERM zum Relationenschema

Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

Hörsaal-Quiz - Recap erste Hälfte


Öffnet die App über den QR-Code oder den Link:

https://quiz.lswi.de/

Pwd: ewinf

Der Weg zur Datenbank - Relationale Modellierung

ER-Schemata und Regeln des relationalen Datenmodells

T 1

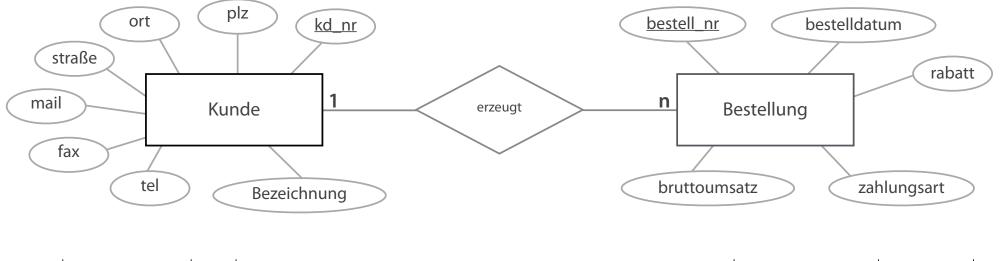
T 2

T 3

	Attribut 1	Attribut 2	Attribut 3
T 1			
T 2			
Т3			

Attribut 1	Attribut 2	Attribut 3
1001	Α	
1002		grün
1003	С	

Grundstruktur

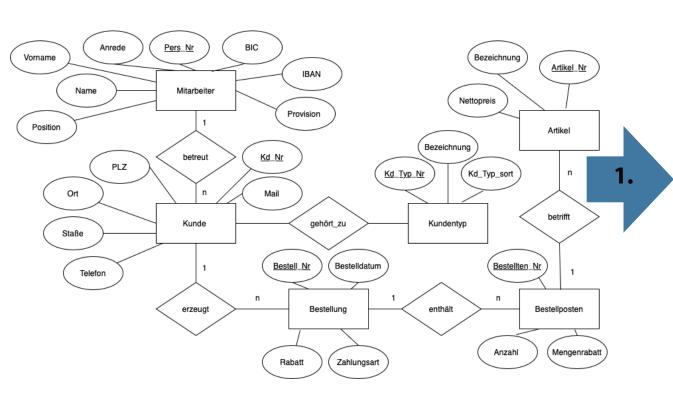

- Relation (Tabelle) einziges
 Konstrukt im Relationenmodell
- Zweidimensional (Zeilen Tupel, Spalten - Attribute)

Gültigkeitsregeln

- Jede Relation hat einen Primärschlüssel
- Primärschlüsselattribut darf nicht NULL (leerer Wert) sein
- Beziehungen zwischen Tabellen über Fremdschlüssel

Überführungsregeln vom Entity-Relationship-Modell zum relationalen Schema

- Jeder Entitytyp ---> eine Tabelle
- Relationshiptyp ---> bei n:m eine Tabelle
- Attribute der abgebildeten Entitäts- und Beziehungstypen ---> in die jeweiligen Tabellenspalten



<u>kd_nr</u>	bezeichnung	ort	•••	<u>bestell_nr</u>	bestelldatum	kd_nr*	•••
	i		;;				i
	;				1	;	:
	:	!	:			:	:
	i i	i	i		i e	i	i
	;		;		-	:	;
	*		4	•••••		.	•
	! :		!		!	!	:
	i	i	i		i e	i	i
					1		
			,		1	,	
	!		!		1	!	:
		•	•		•	•	•

Für 1:1 und 1:n-Beziehungen wird auf eine eigene Beziehungstabelle verzichtet!

Der Weg vom ERD zur Tabelle

- 1. Übertragen des ERD in Tabellen (Entitäts-, Relationstabellen -> Entfallen der Relationen nach Abhängigkeit der Kardinalität)
- 2. Kennzeichnung der Primärschlüssel
- 3. (Kennzeichnung der Fremdschlüsselattribute)

Z. Kunde | kd_nr | mitarbeiter_nr* | PLZ | ort | ...

Bestellung

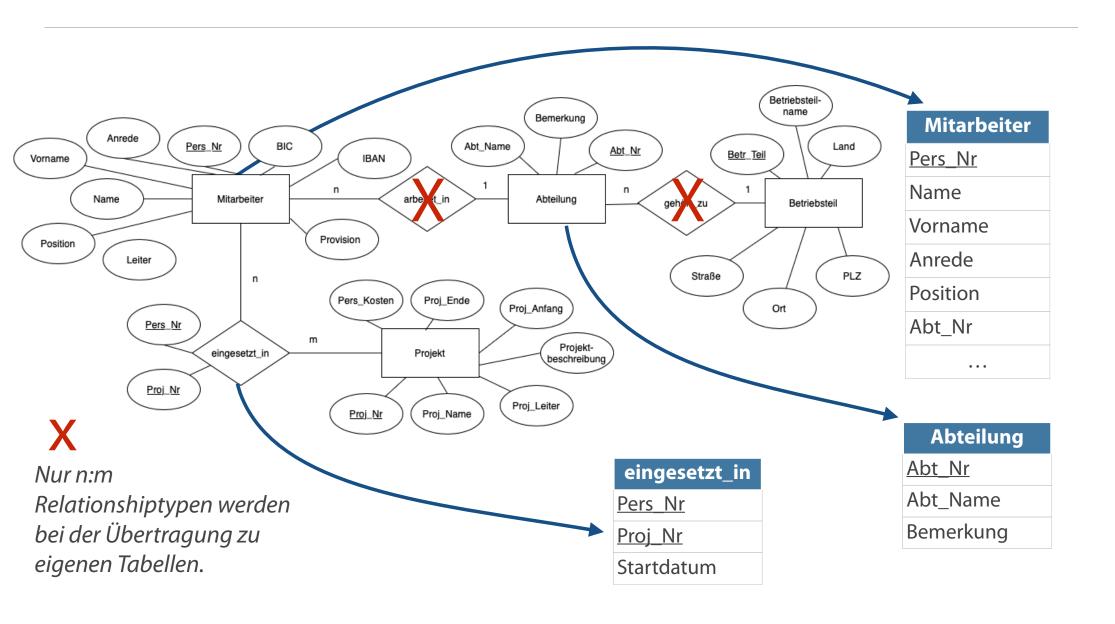
bestell_nr kd_nr * zahlungsart ...

Bestellposten

bestellposten_nr anzahl mengenrabatt ...

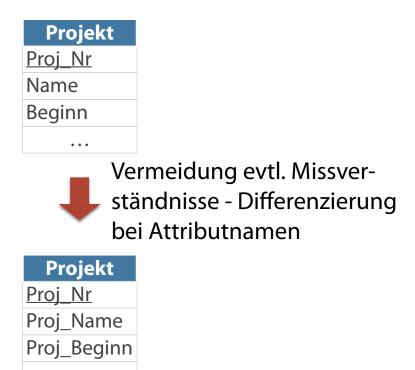
Artikel

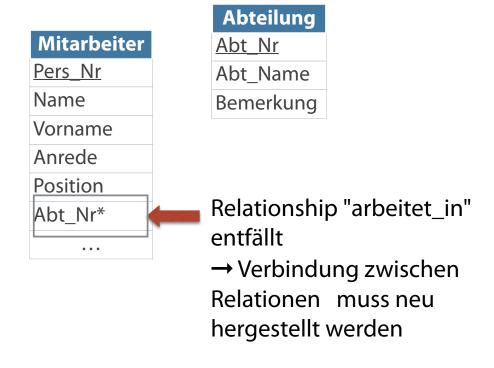
<u>artikel_nr</u> artikelgr_nr* bezeichnung ...


Kundentyp

kd typ_nr kd_typ_sort bezeichnung ...

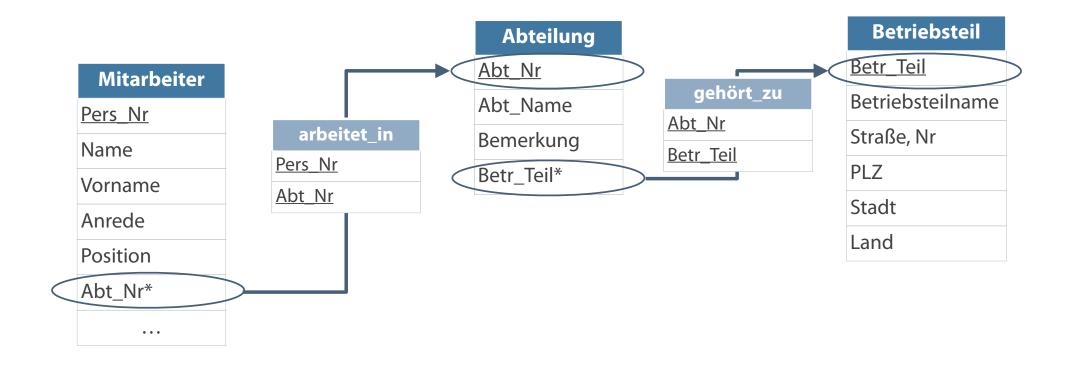
Mitarbeiter


pers nr position iban ...


Umgang mit Relationshiptypen

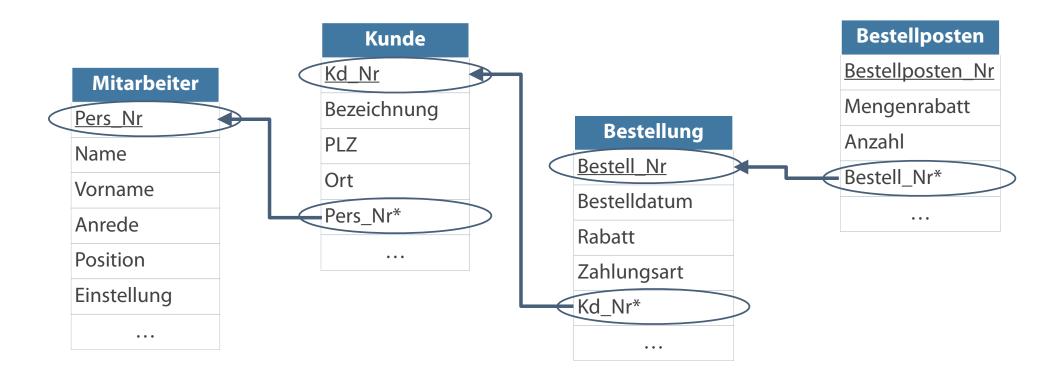
Kennzeichnung der Primärschlüssel

Markierung von Primärschlüsseln: Unterstreichung



Die lokale Integritätsbedingung lautet: Keine doppelten Werte im (Primär-)Schlüsselattribut.

Kennzeichnung der Fremdschlüsselattribute (Beispiel Organisation)


Fremdschlüssel werden durch einen Stern * gekennzeichnet

Globale Integritätsbedingung: Im Fremdschlüssel existierende Werte müssen im Primärschlüssel der verbundenen Tabelle stehen.

Kennzeichnung der Fremdschlüsselattribute (Beispiel Kundenbestellung)

Fremdschlüssel werden durch einen Stern * gekennzeichnet

Globale Integritätsbedingung: im Fremdschlüssel existierende Werte müssen im Primärschlüssel der verbundenen Tabelle stehen.

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM

Modellierungsschritte am Beispiel

Vom ERM zum Relationenschema

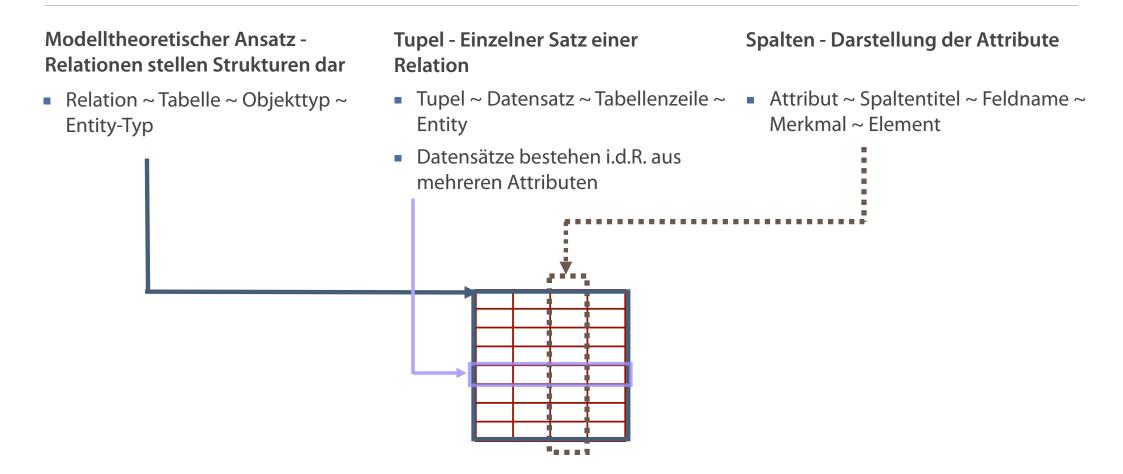
Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

Das relationale Datenmodell (Datenbankmodell)

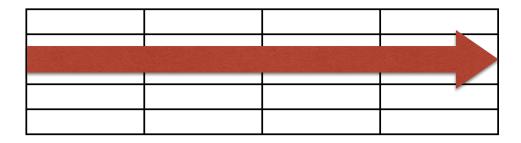
Beziehungen zwischen Daten auf Basis von Relationen

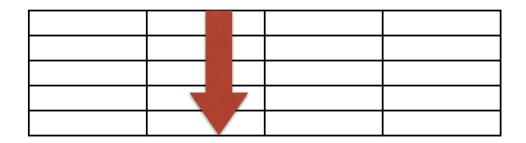
- Anfang der 70er Jahre von Edgar F. Codd entwickelt
- Grundlage der meisten heute kommerziell genutzten Datenbanksysteme (DBS)
- Darstellung und Verwaltung der Daten in Form von Relationen (zweidimensionale Tabellen)



E. F. Codd

Datenbanksprache


- Formale Abfragesprache zur Suche von Informationen in einer Datenbank
- Sprachkonstrukte für die Ausdrücke der Relationenalgebra realisieren entsprechende Datenbankabfragen


Merkmale des relationalen Modells

Das relationale Modell beschreibt Daten in zweidimensionalen Relationen mit Spalten und Tupeln.

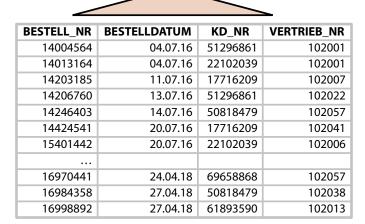
Maße in Relationen

Grad der Tabelle ~ Anzahl der Datenspalten

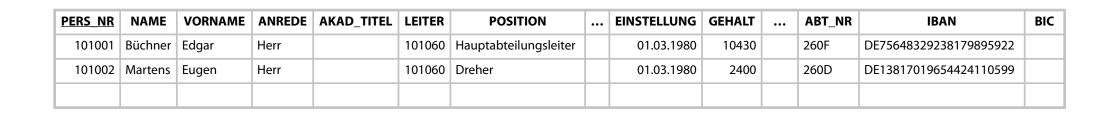
- Erste Spalte Schlüsselattribut (typisch)
- Erste und weitere Spalten Attributkombination als Schlüsselattribut (möglich)
- Weitere Spalten Attribute -> Beschreibung der Entität

Mächtigkeit der Tabelle ~ Anzahl der Datensätze

- Erste Zeile ("Schemazeile") nennt Attributbezeichner
- Folgende Zeilen beinhalten Datensätze


Spalten und Zeilen im relationalen Datenmodell

Zusammenfassung gleichartiger Tupel in Relationen (Tabellen)


 Beispiel für ein Tupel: {101003; Dost; Alexander; H; ; 101025; Einkäufer; 19.09.1955; 01.03.1980; 3100; 210E; Einkauf; P120; PO; Produktion, Organisation; P120; 894250; 16010111}

Gleiche Attributmerkmale der Werte innerhalb einer Spalte

Mächtigkeit der Tabelle "Bestellung": 99 Datensätze

Grad der Tabelle "Mitarbeiter": 14 Spalten

Das Prinzip des Entity Relationship Modells (ERM)

Beschreibungsregeln des ERM

Modellierungsschritte am Beispiel

Vom ERM zum Relationenschema

Das Prinzip relationaler Modellierung

Voraussetzungen für relationale Modelle

Forderung eines relationalen Datenmodells

Definition

- Alle Tupel einer Relation müssen sich unterscheiden lassen
- Darstellung der Anwendungsdaten nichtredundant

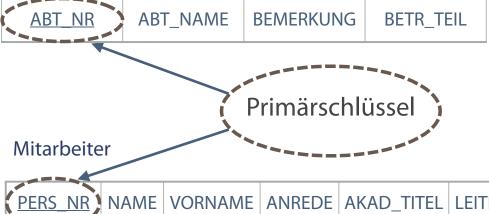
Lösungsansatz

 Bildung einer Teilmenge von Attributen, die alle Tupel eindeutig unterscheiden

Folge

Existenz keiner zwei Tupel mit derselben
 Wertekombination für alle ihre Attribute zulässig

Realisierung

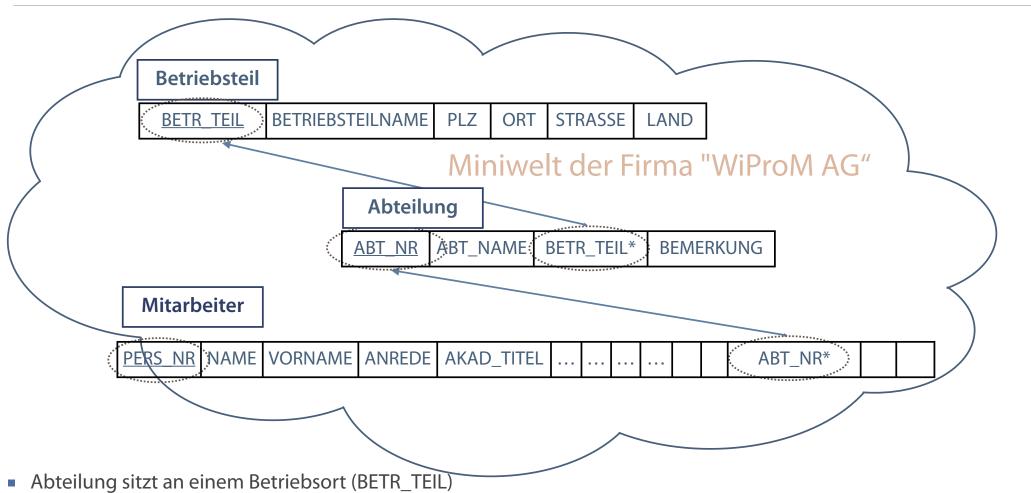

 Kennzeichnung der Attributkombination als Unterscheidungsmerkmal (Schlüsselmerkmal)

Primärschlüssel

Schlüsselattribut - eindeutige Identifizierung eines Tupels

- Grundvoraussetzung in der Datenbankrealisierung
- Zugriff auf jeden einzelnen Datensatz über einzigartige Werte innerhalb eines Attributs

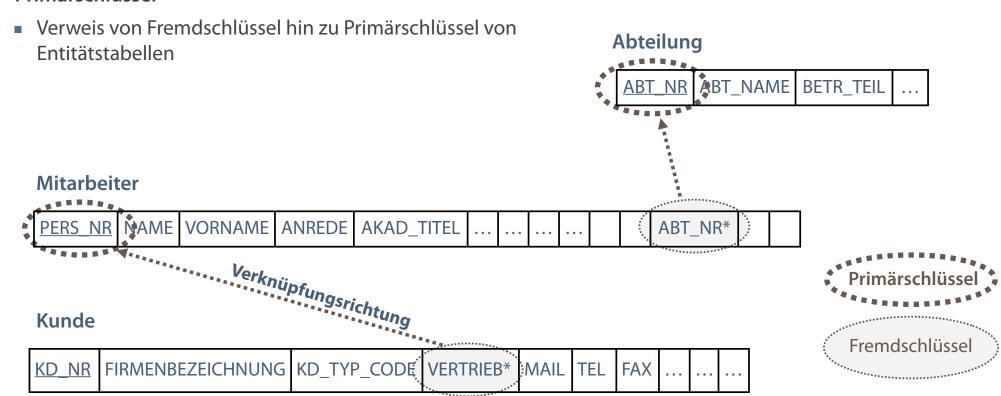
Abteilung


Eindeutige Identifikation eines Tupels (Datensatz)

- Besteht aus einem oder mehreren Attributen
- Voraussetzung eindeutige Identifizierung möglich
- Wert darf nicht NULL sein
- NULL entspricht einem nicht ausgefüllten Feld

_														
	PERS_NR	NAME	VORNAME	ANREDE	AKAD_TITEL	LEITER	POSITION	GEBURTSTAG	• • •	• • •	•••	ABT_NR	IBAN	BIC

In einer Relation darf jeder Wert im Primärschlüssel höchstens einmal vorkommen.


Beziehungen und Abhängigkeiten zwischen Objekten im Relationalen Modell

- Mitarbeiter arbeitet in einer Abteilung (ABT_NR)

Fremdschlüssel

Verknüpfung der Tabellen über Verweis auf Primärschlüssel

Die voneinander unabhängig existierenden Tabellen werden durch Fremdschlüssel miteinander in eine Beziehung gesetzt.

Fremdschlüssel in einer Relationshiptabelle

Grundsatz

- Mindestens zwei Fremdschlüssel in einer Relationshiptabelle
- Stammen aus den zu verbindenden Entitytypen
- Analogie zu Funktionsweise von Relationships im ERN

Beispiel

Mitarbeiter

PERS_NR	NAME	VORNAME	ANREDE	•••
101001	Büchner	Edgar	Herr	
101002	Martens	Eugen	Herr	
101003	Dost	Alexander	Herr	
101004	Fuchs	Erna	Frau	
101005	Rösch	Konrad	Herr	

eingesetzt_in

PROJ NR	PERS_NR	•••
P110	101069	
P110	101025	
P110	101098	
P110	101103	
P120	101003	

Projekt

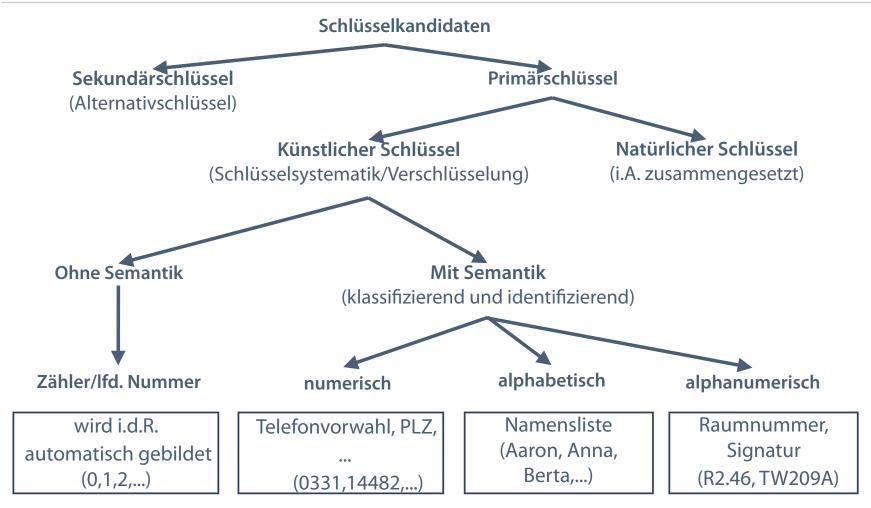
PROJ NR	PROJ_NAME	PROJ_LEITER	•••
P110	B-Sensoren	101069	
P120	Mitbewerber Asien	101059	
P130	Messerkopf Härtung	101084	
P140	Vormontage 2009	101115	
P150	ERP-System	101075	

Vorname	nrede Pers Nr	BIC IBAN
Position	Mitarbeiter	Provision
n ERM	Pers_Nr eingesetzt_in	Pers_Kosten Proj_Ende Proj_Anfang m Projekt Projekt-beschreibung
	Proj Nr	Proj_Name Proj_Leiter

Aufgaben der Schlüssel

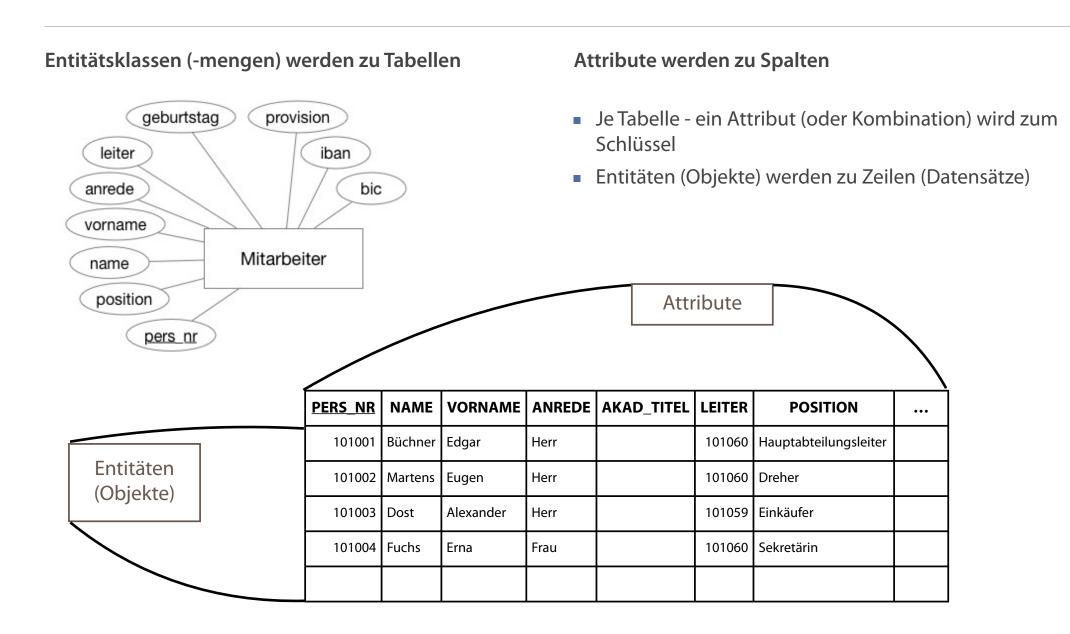
Beschreibung von Realweltobjekten über deren Eigenschaften

- Berücksichtigung der Informationsmenge zur Erzielung gewünschter Resultate
- Differenzierung der einzelnen Objekte über ein oder mehrere Attribut mit eindeutigen Identifikationsmerkmalen - Schlüsselattribut(e)


Aufgabe von Schlüsseln

- Kennzeichnung
- Einordnung
- Rationalisierung
- Information

NAME	VORNAME	LEITER	POSITION
Engel	Lothar	101006	Buchhalter
Engel	Lothar	101051	Vertriebsassistent
Enke	Torsten	101033	Transportarbeiter
Fritzsche	Frank	101027	Monteur


Diese Attribute sind eindeutig nicht als Schlüssel geeignet!

Schlüsselsystematik

Schlüsselbildung und -einsatz unterliegen den Regeln der Datenintegrität.

Überführung von Entitäten (Entities) - Zusammenfassung

Hörsaal-Quiz - Wissensvertiefung

Öffnet die App über den QR-Code oder den Link:

https://quiz.lswi.de/

pwd: ewinf

Kontrollfragen

- Welches Ziel verfolgt die Modellbildung?
- Welcher Zusammenhang besteht zwischen betrachteten Gegenständen der realen Welt und Datenobjekten?
- Wofür werden die Attribute in den Entities benötigt?
- Welche Bedeutung besitzen die Beschreibungsregeln im ERM?
- Welche Zusammenhänge beschreibt die Kardinalität?

Literatur

- Elmazri, R./Navathe, S. B.: Grundlagen von Datenbanksystemen; 3. Auflage, 2010, Addison-Wesley
- Heuer, A./Saake, G./Sattler, K.-U.: Datenbanken: Konzepte und Sprachen; 6. Auflage, 2018, mitp
 Verlag
- Stahlknecht, P./Hasenkamp, U.: Einführung in die Wirtschaftsinformatik, 11. Auflage, 2004, Springer

Zum Nachlesen

Gronau, N., Gäbler, A.: Einführung in die Wirtschaftsinformatik, Band 1 8. überarbeitete Auflage GITO Verlag Berlin 2019, ISBN 978-3-95545-233-9

Kontakt

Univ.-Prof. Dr.-Ing. Norbert Gronau

Center for Enterprise Research Universität Potsdam August-Bebel-Str. 89 | 14482 Potsdam Germany

Tel. +49 331 977 3322 E-Mail <u>ngronau@lswi.de</u>